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Abstract 

In this note, we give some sequences of operators which have the same function with a basis for 
some vector-valued Orlicz sequence spaces. Also, we characterize the space ( )YXhM ),(Β  of continuous 
operators from )(XhM  into Y  where M  is an Orlicz function, X , Y  are Banach spaces and )(XhM  is 
the space of all X -valued sequences )( kxx =  such that 
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 for all 0>ρ . 

Exactly, we obtain that each ( )YXhT M ),(Β∈  is equivalent, under certain conditions, to any sequence 
∞
== 1)( kkAA  of operators ),( YXAk Β∈ . 
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Bazı Vektör-Değerli Orlicz Dizi Uzayları Üzerindeki Operatörler 
 

Özet 

Bu çalışmada, bazı vektör-değerli Orlicz dizi uzayları için bir baz ile aynı işleve sahip olan bir 
operatör dizisi tanımladık. Ayrıca, bundan faydalanarak )(XhM  uzayından Y  uzayına sürekli 
operatörlerin ( )YXhM ),(Β  uzayını karakterize ettik. Burada M  bir Orlicz fonksiyonu, X , Y  Banach 
uzayları ve )(XhM , 

∞<⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

=1k
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ρ
 her 0>ρ  için 

olacak şekildeki tüm X -değerli )( kxx =  dizilerinin uzayıdır. Aslında, tam olarak, bazı şartlar 

altında, her bir ( )YXhT M ),(Β∈  operatörünün ),( YXAk Β∈  operatörlerinin bir ∞
== 1)( kkAA  dizisine 

denk olduğu sonucuna ulaştık. 
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1. Introduction 

After J. Lindenstrauss & L. Tzafriri [1] introduced the Orlicz sequence space Ml , many 
variations of these spaces investigated and some of them generalized to vector-valued case. For 
example, a general case of vector-valued Orlicz sequence spaces is given by D. Ghosh & P. D. 
Srivastava [2]. In many respect, the properties of operators on some Orlicz sequence spaces (or 
Orlicz function spaces) are more important than structural investigation of the spaces. 
Especially, dealing with some integral equation and introducing an existence theorem to the 
equation, operators on some Orlicz spaces which has been given with respect to the equation 
plays a crucial role. Some related results with applications of these spaces presented in some 
cites such as [3,4]. Further, in the operator theory and operator algebras, characterizations of 
operators are useful in giving an example or a counterexample to some structural problems. In 
connection with the vector-valued sequence space theory, the operators from X -valued Orlicz 
sequence space )(XhM  (or )(XMl ), where X  is a Banach space, into another Banach space Y  
are our main interest. J. Lindenstrauss & L. Tzafriri, [5], characterized the functionals defined 
on Ml  by finding its continuous duals. Dealing with continuous duals of an abstract topological 
vector space X  or representation of operators defined from X  into another topological vector 
space Y , bases of the space X  have an important role. This illustrated in cite [6] for some well-
known scalar sequence spaces in detail. But, finding a basis for vector-valued sequence spaces 
is not possible, in general. In this note, we give some sequences of operators which have the 
same function with a basis for some vector-valued Orlicz sequence spaces. Also, by using this 
notion, the representation of continuous operators from )(XhM  into another Banach space Y  
are presented.  

2. Prerequisites 

For some Banach space X , XB  denotes the unit sphere of X , i.e. { }1: ≤∈= xXxBX . 

Specially, we use MB  instead of )( XhM
B  in the context. Furthermore, *X  denotes the 

continuous dual of X , and for an operator T  from X  to another Banach space Y , we denote 
the adjoint operator of T  by *T  such that ))(())(( * xTfxfT =  for all Xx∈ .  

We recall, [7,1], that an Orlicz function is a function ),0[),0[: ∞→∞M  which is 
continuous, non-decreasing and convex with 0)0( =M , 0)( >uM  for all 0>u  and ∞→)(uM  
as ∞→u . An Orlicz function M  can always be represented in the following integral form: 

,)()(
0

dttpuM
u

∫=  

where p , known as the kernel of M , is right-differentiable for 0≥t , 0)0( =p , 0)( >tp  for 
0>t , p  is non-decreasing and ∞→)(tp  as ∞→t . 

Consider the kernel )(tp  associated with Orlicz function )(uM , and let 
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})(:sup{)( stptsq ≤= . 

Then q  possesses the same properties as the function p . Suppose now 

dssqvN
v

∫= 0
)()( . 

Then N  is an Orlicz function. The functions M  and N  are called mutually complementary 
Orlicz functions, and they satisfy the Young inequality, 

)()( vNuMuv +≤  for 0, ≥vu . 

An Orlicz function M  is said to satisfy the 2∆ -condition for small u  or at 0  if for each 0>k  
there exist 0>kR  and 0>ku  such that )()( uMRkuM k≤ , for all ],0( kuu∈  [8].  

The space Ml  consists all sequences )( kx  of scalars such that 
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and it becomes a Banach space which is called an Orlicz sequence space with the Luxemburg 
norm 
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The space Ml  is closely related to the space pl  which is an Orlicz sequence space with 
puuM =)( , )1( ∞<≤ p . 

Another definition of Ml , [8], is given by the complementary function to M  as follows: 
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where N  is the complementary function to M , and Nl
~  is the collection of all x  in w  with 

( ) ∞<∑∞

=1k kxN . Clearly, NN ll ⊆
~ , and Ml  is normed by the Orlicz norm 
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It was shown that these two norms on Ml  are equivalent.  

An important closed subspace of Ml  is Mh , and introduced by Y. Gribanov as follows: 
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Immediately, we can introduce the vector-valued extension of the spaces Ml  and Mh  for any 
Banach space X . Therefore, 
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where )(Xs  is the space of all X -valued sequences and ⋅  is the norm of X . )(XMl  is a 
Banach space with the Luxemburg norm 
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and it coincides with Ml  whenever Χ=X , the set of complex numbers. Further, define the 
closed subspace )(XhM  of )(XMl  by )()( Xhxx Mk ∈=  iff 
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If M  satisfies the 2∆ -condition then )()( XXh MM l= .  

 

3. Some Results on Vector-valued Orlicz Sequence Spaces 

Let we begin this section with introducing another definition of )(XMl  by the 
complementary function N  to M . 
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where )(~ *XNl  is the class of all sequences )( kff =  such that ( )∑∞
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Lemma 1. For each )(Xx Ml∈ , 
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defines a norm on )(XMl . This norm is said to be Orlicz norm on )(XMl .  

Lemma 2. On )(XMl , the norms M⋅  and )(M⋅  are equivalent, and )()( 2 MMM xxx ≤≤ . 

Proofs of these lemmas easily can be given in a similar way followed in cite [8, Theorem 8.9], 
by using the inequality 
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and the fact that )(Xx Ml∈  iff ( ) Mkkx l∈∞

=1 . 

In general, for )(XhM , a Schauder basis isn’t known. But it can be easily verified that )(XhM  
is separable whenever X  is (see [2]). As an extension of the classical case, )(XMl  may not be 
separable even if X  is separable. Generally, the separability of Orlicz sequence spaces depends 
on whether M  satisfies the 2∆ -condition.  

Now, for )(XhM , let we give a theorem which has the same function with a basis.  

Theorem 3. For K,2,1=k , let )(: XhXI Mk →  and XXhP Mk →)(:  be defined by 
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Proof. 
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Lemma 4. Let M  be an Orlicz function. The sets 
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4. Characterizations of Operators 

Our main result is the following theorem which states the representation of operators 
from )(XhM  into another Banach space Y . 
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Theorem 5. Let X , Y  be Banach spaces and M , N  be mutually complementary Orlicz 
functions. Then, )),(( YXhMΒ  is equivalent by the mapping )( kITT o→  to the Banach space 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∞<=∈== ∞
=

∈ Nkk
Bf

kN fAAYXsAAE
Y

1
* )(sup:)),(()(

*

Β , 

where each kI  is defined as in Theorem 3. By an equivalence, we mean a one to one, onto, 
linear isometry.  

Proof. It can be easily verified that NE  is a Banach space with the norm A . Let 
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since )(Xhx M∈ . This means the series )( kk xA∑  is convergent, i.e., T  is well-defined. 
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This shows, in the same time, Ψ  is an isometry. 

Example 6. Let 0cYX ==  and M , N  be mutually complementary Orlicz functions. 
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Bf

AfA
Y

 

Example 8. The inclusion relation in Remark 7 may be strict. Let 1l=X , MhY = , and M , N  
be mutually complementary Orlicz functions such that 1)1( =M . Define Mk hA →1: l  by  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⊗=

−

KK ,0,,0,,0,0
 positionthk

kkkk xexxA  



Operators on Some Vector-Valued Orlicz Sequence Spaces 

69 

for 1)( l∈= nxx . Since *
Mh  is equivalent to Nl  by the cite [5, p.148], for some *

MhBf ∈  

∑=
n

nn yxxf )(  

where Nnyy l∈= )(  and fy N =)( . Hence, kkkk yxxAfxfA == )())(( *  so that 

.*
kk yfA =  

This implies 

,1
1 )(

*

≤⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
∞

=k N

k

y

fA
N  

and so  

.1sup
1 )(

*

*

≤⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
∞

=∈ k N

k

Bf y

fA
N

Mh

 

This means Nk EA ∈)( . On the other hand, 1=kA  for each k . Let us show this assertion. For 

MhBx∈  

,

)1)1( (since ,

1:0inf)()(

x

Mx

x
MexxA

k

k
MkkMk

≤

==

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>=⊗=

ρ
ρ

 

that is, 1)( ≤x

xA Mk . Also, for kex = , 1)( =Mk xA , whence the assertion proved. Therefore, 

)),(()( 1 MNk hA ll Β∉  since ∞=∑∞

=1
)1(

k
N ρ  for every 0>ρ . 

In the case Y  is finite dimensional, Dvoretzky-Rogers theorem assert that the inclusion 
relation (7) is an equivalence. To show this let us recall that 0m  is the space of all scalar 
sequences taking on only finitely many values, that is }{0 ζspanm = , where ζ  is the set of all 
sequences of zeros and ones.  

Theorem 9. )),(( YXE NN Βl=  when Y  is finite dimensional.  
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Proof. Suppose that Nk EA ∈)(  and )()( Xhxx Mk ∈= . For each 0)( mvv k ∈=  we have 
)()( Xhxvvx Mkk ∈= . Indeed, for each 0>ρ   

,
111

∞<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑∑∑
∞

=

∞

=

∞

= k

k

k

kk

k

kk x
M

xv
M

xv
M

λρρρ
 

where kvmax=λ . Further, 

∑
k

kkk xvA )(  

converges for all 0mv∈ , since the operator ∑∞

=
=

1
)(

k kk xATx  well-defined on )(XhM  by the 

virtue of Theorem 5. Now let )( ik  be a strictly increasing sequence of natural numbers, and 
define )( kbb =  by 

.
 if,0
 if,1

⎩
⎨
⎧

≠
=

=
i

i
k kk

kk
b  

Then, obviously 0mb∈ , and so 

∑∑ =
i

kk
k

kkk ii
xAxbA )()(  

is convergent. This implies that the series ∑
k

kk xA )(  is subseries convergent, so it is 

unconditionally convergent. Hence, from Dvoretzky-Rogers theorem it is absolutely convergent 
since Y  is finite dimensional. So, we have that 

∞<∑
k

kk xA )(  

for each )()( Xhxx Mk ∈= . Now, we can find some Xk By ∈  such that 

kkk yAA 2≤  

for each k , since each ),( YXAk Β∈ . Further, define the sequence )( kzz =  such that kk yuz =  
for each Mk hu ∈)( . Obviously )(Xhz M∈  and so 
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.2

)(2

2

∞<=

=

⋅≤⋅

∑
∑
∑∑

k
kk

k
kkk

k
kkk

k
kk

zA

yuA

yAuuA

 

This shows that the real sequence ( ) α
Mkk hA ∈∞

=1 . But, from the cite [8], α -dual of Mh  is 
equivalent to Nl . Hence, 

∞<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
∞

=1k

kA
N

ρ
 

for some 0>ρ . This means )),(()( YXAA Nk Βl∈= . 

Corollary 10. Let M , N  be mutually complementary Orlicz functions. Then 
)()]([ ** XXh NM l= . 

This is a direct consequence of Theorem 5 and Theorem 9 for Χ=Y , the scalar field of 
)(XhM  and X . 
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