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Abstract

In this note, we give some sequences of operators which have the same function with a basis for
some vector-valued Orlicz sequence spaces. Also, we characterize the space B(hM (X),Y ) of continuous

operators from #,,(X) into Y where M is an Orlicz function, X, Y are Banach spaces and 4,,(X) is

the space of all X -valued sequences x =(x,) such that

iM[Mj«w forall p>0.

k=1 P
Exactly, we obtain that each T e B(hM (X),Y ) is equivalent, under certain conditions, to any sequence
A=(4,);, ofoperators 4, € B(X,Y).
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Baz1 Vektor-Degerli Orlicz Dizi Uzaylar1 Uzerindeki Operatorler

Ozet

Bu calismada, baz1 vektor-degerli Orlicz dizi uzaylari igin bir baz ile ayni isleve sahip olan bir
operator dizisi tamimladik. Ayrica, bundan faydalanarak 4, (X) uzaymndan Y wuzayma siirekli

operatdrlerin B(hM (X),Y ) uzaymni karakterize ettik. Burada M bir Orlicz fonksiyonu, X, ¥ Banach
uzaylar1 ve h,,(X),

Zw:M[MJ<oo her p >0 i¢in
P

k=1

olacak sekildeki tiim X -degerli x=(x,) dizilerinin uzayidir. Aslinda, tam olarak, baz1 sartlar
altinda, her bir T e B(hM (X),Y ) operatoriiniin 4, € B(X,Y) operatorlerinin bir 4=(4,),, dizisine
denk oldugu sonucuna ulastik.
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1. Introduction

After J. Lindenstrauss & L. Tzafriri [1] introduced the Orlicz sequence space /,, , many

variations of these spaces investigated and some of them generalized to vector-valued case. For
example, a general case of vector-valued Orlicz sequence spaces is given by D. Ghosh & P. D.
Srivastava [2]. In many respect, the properties of operators on some Orlicz sequence spaces (or
Orlicz function spaces) are more important than structural investigation of the spaces.
Especially, dealing with some integral equation and introducing an existence theorem to the
equation, operators on some Orlicz spaces which has been given with respect to the equation
plays a crucial role. Some related results with applications of these spaces presented in some
cites such as [3,4]. Further, in the operator theory and operator algebras, characterizations of
operators are useful in giving an example or a counterexample to some structural problems. In
connection with the vector-valued sequence space theory, the operators from X -valued Orlicz
sequence space f,,(X) (or /,,(X)), where X is a Banach space, into another Banach space Y

are our main interest. J. Lindenstrauss & L. Tzafriri, [5], characterized the functionals defined
on /,, by finding its continuous duals. Dealing with continuous duals of an abstract topological

vector space X or representation of operators defined from X into another topological vector
space Y , bases of the space X have an important role. This illustrated in cite [6] for some well-
known scalar sequence spaces in detail. But, finding a basis for vector-valued sequence spaces
is not possible, in general. In this note, we give some sequences of operators which have the
same function with a basis for some vector-valued Orlicz sequence spaces. Also, by using this
notion, the representation of continuous operators from #,,(X) into another Banach space Y

are presented.

2. Prerequisites

For some Banach space X, B, denotes the unit sphere of X ,i.e. B, = {x eX ||x|| < 1}.

Specially, we use B, instead of B, v, in the context. Furthermore, X " denotes the

continuous dual of X, and for an operator 7 from X to another Banach space Y , we denote
the adjoint operator of T by T~ such that (T f)(x) = f(T(x)) forall xe X .

We recall, [7,1], that an Orlicz function is a function M :[0,00) —[0,00) which is
continuous, non-decreasing and convex with M (0)=0, M (u)>0 forall >0 and M (1) > »
as u —> . An Orlicz function M can always be represented in the following integral form:

M@= pydr,

where p, known as the kernel of M , is right-differentiable for >0, p(0)=0, p(¢#)>0 for
t>0, p is non-decreasing and p(¢) —> o as t —> 0.

Consider the kernel p(¢) associated with Orlicz function M (u), and let
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q(s)=supf{t: p(t) <s}.

Then g possesses the same properties as the function p . Suppose now

NO) = j qu(s)ds .

Then N is an Orlicz function. The functions M and N are called mutually complementary
Orlicz functions, and they satisfy the Young inequality,

w<M@u)+ N() for u,v=>0.

An Orlicz function M is said to satisfy the A, -condition for small u or at 0 if for each k>0
there exist R, >0 and u, >0 such that M (ku) < R .M (u), for all u < (0,u,] [8].

The space /,, consists all sequences (x,) of scalars such that

iM(M}<oo for some p>0,
P P

and it becomes a Banach space which is called an Orlicz sequence space with the Luxemburg
norm

||x||(M) =inf p>0:ZM{MJSI .
k=1 P
The space /), is closely related to the space ¢, which is an Orlicz sequence space with
M@u)=u?, (1< p<x).

Another definition of ¢,,, [8], is given by the complementary function to M as follows:

Ly = {x =(x,)e w:Zxkyk converges, forall y € ?N},

k=1

where N is the complementary function to M , and ?N is the collection of all x in w with

z; N (|xk| )< . Clearly, ?N c/,,and 7,, is normed by the Orlicz norm

I, p{

o0
zka’k
k=1

)=t}
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It was shown that these two norms on ¢,, are equivalent.

An important closed subspace of 7,, is #/,,, and introduced by Y. Gribanov as follows:

hy, ={x=(xk)ew:iM(mJ<oo,forallp>0}.
P

k=1

Immediately, we can introduce the vector-valued extension of the spaces ¢,, and 4, for any
Banach space X . Therefore,

k=1

EM(X)={xes(X):iM(Mj<oo,forsomep>0},
P

where s(X) is the space of all X -valued sequences and |||| is the norm of X'. /,,(X) is a
Banach space with the Luxemburg norm

o =inf >O:OOMM <1\,
I, p>0:y
k=1

P

and it coincides with /,, whenever X =X, the set of complex numbers. Further, define the
closed subspace 4, (X) of 7,,(X) by x=(x,) e h,, (X) iff

iM(Mj<oo forall p>0.

=1 P

If M satisfies the A, -condition then 4, (X)=/,,(X).

3. Some Results on Vector-valued Orlicz Sequence Spaces

Let we begin this section with introducing another definition of 7, (X) by the
complementary function N to M .

fM(X)={xes(X):ifk(xk)converges,forallf=(fk)ezN(X*)},

k=1

where ?N (X7") is the class of all sequences f = (f;) such that ZLN("fk” )< o0,
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Lemma 1. For each xe/,,(X),

I, - sup{

ka(xk) :ZN(||ﬁ||)S1}<w

defines a norm on ¢,,(X). This norm is said to be Orlicz norm on ¢,,(X).

Lemma 2. On /,,(X), the norms || : ||M and || : ||(M) are equivalent, and ||x||(M) < ||x||M < 2||x||(M).

Proofs of these lemmas easily can be given in a similar way followed in cite [8, Theorem 8.9],
by using the inequality

b

ka (x| < Z”fk ” ) "xk
k=1 k=1

and the fact that x € £,, (X) iff (|l ) €2, .

In general, for 4,,(X), a Schauder basis isn’t known. But it can be easily verified that 4,,(X)
is separable whenever X is (see [2]). As an extension of the classical case, /,,(X) may not be

separable even if X is separable. Generally, the separability of Orlicz sequence spaces depends
on whether M satisfies the A, -condition.

Now, for 4,,(X), let we give a theorem which has the same function with a basis.
Theorem 3. For k=12,...,let I, : X = h,,(X) and P, : h;,(X) > X be defined by
k—th position
I,(u)=u®e, =(0,0,...,O, u ,0,...} and P, (x)=x,,
respectively. Then, for each x € /,, (X)

x=Y (I o B)(x),
k=1

—0asn—>w.
(M)

that is

x="" (I o B)(x)

Proof.
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= ||(0,0,. L0x L x

(M)

:mf{m ZM(HH

k=n+1 P

n+l>n+2o0 )"(M)

x= (I, 0 B)(X)
k=1

Since z;M (@)< o for every p >0 we can find some positive integer m = m() such that

Zw M (M)S 1. This shows that
k=m+1 P

inf{p>0: i M(MJSI}—W as n—» .

k=n+l1 P

Lemma 4. Let M be an Orlicz function. The sets

A= {x es(X): ZM("xk” )S 1}
k=1
and
A, =he S(X):”x"(M) < 1}
are identical.

Proof. Let x e A,, this means Z;M (@)Sl for p=1. Hence,

|x||(M) <1, ie, xeA,.

Conversely, let x € A, , thatis

inf{p>o:iM[M]31}sl.

k=1 P

This means Z;M (@)Sl for some p <1. Therefore Z;M (||xk||)S1 since M is non-

decreasing.

4. Characterizations of Operators

Our main result is the following theorem which states the representation of operators
from /,,(X) into another Banach space Y .
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Theorem 5. Let X, Y be Banach spaces and M, N be mutually complementary Orlicz
functions. Then, B(#,,(X),Y) is equivalent by the mapping 7 — (7 o1, ) to the Banach space

Ey= {A = () € sBCCT): = sup [y, < oo} ,
) EBY*
where each /, is defined as in Theorem 3. By an equivalence, we mean a one to one, onto,

linear isometry.

Proof. It can be easily verified that E, is a Banach space with the norm ||A|| Let
T eB(hy,(X),Y) and say A, =Tol, for cach k. This implies [(4, oP,)(x)|=0 so that
A, (x,)=0 for each k. Since each x € h,,(X) has the representation x = z::l (L, o P,)(x) we

can write

TXZZ(TOIk)(xk):ZAk(xk)-
k=1

k=1

Immediately each 4, e B(X,Y) since ||Ak || < ||T || : ||I p || = ||T || . Now, let us define the mapping
W :B(hy (X),Y) > Ey, by W(T) = A= (4)7; 4 =To1,.

W(T)=0 ifand only if each 7o/, =0 and so 7 =0 by the definition of each I, ,i.e. ¥ is one
to one. Also, for an arbitrary 4 € E,,, if we define the operator 7' by

I = ZAk(xk)
k=1

on h,,(X) then, by using the Young inequality, we have

Zn: A (x)

k=m

f[ i‘, A (x, )J
fe=m
2 Bt

" Af i ( - )
P v A Arl bl

= sup
feB .

; A4S ol Bl
< sup ZN +ZM{1/”A” .

fEBY" k=m (A/(f)f=1 N k=m
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Since (4, f)r_, €/ (B(X,Y)) foreach f €Y  and

P
;N[Hmzf)z"lHN } .

from the cite [8, Proposition 8.12], we have

J—)O as m,n — o,

- I
ﬁ$§Nu£ﬁ%M

Also

M —0 as m,n—> o
> (I/IIAIIJ

since x € h,, (X). This means the series ZAk (x,) is convergent, i.e., T is well-defined.

Further, that the mapping ¥ is onto, i.e., T € B(%,,(X),Y) comes from the following equalities
chain

ZA ()

k=1

4meﬁ

Zwﬁm)

k=1

- sup - sp

‘\/l

= Sup Ssup
XeBy, feB N

= Sup Sup
feB XeBy,

DA
k=1

= sup sup{ : iM(”xk” )S 1}, (by Lemma 4)
/B . =1
- wp [0z, =14l

This shows, in the same time, V¥ is an isometry.

Example 6. Let X =Y =¢, and M , N be mutually complementary Orlicz functions.

hy (cy) = {x es(cy): ZM[” k”“’ ] < oo, for every p > 0}
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Let
1/k? 0 0 0
1/2k%) 12k 0 0
A= 0 1@k 1Y@k 0 - lk=12,...
0 0 1/@kY 1/@2kY

B(cy,c,) is equivalent to infinite matrix class (c,,c,) since ¢, is a BK-spaces and has AK-

a,’fl. =k <o . Now, we assert

property [9, p.218]. So, each 4 € B(c,,c,) since ||Ak || =sup, Zi
that the sequence 4 =(4,) defines a continuous linear operator from ¢,,(c,) into ¢, by the

virtue of Theorem 5. To show this, we shall denote that

”A” = fselis'pn “(Aztf)f:luN <00,

Using the unit vector bases of ¢, and ¢, = /,, we can easily show that

/K> 1/2k*) 0 0
0 1/@2k* 1/@k*> o
4= 0 0 1/@k» 1/@k* - k=12,...
0 0 0 1/(2k?)
Hence
n_ Gy ta,

ASf =y =) Vi REEYER

for each f €/, . Further, for each f =(q,,a,,...)€ B, and for every p>0,

Af
AL LS Lin)

) 0
k=1 k=1

0 2
-
pliak 6 P

IA

IA

since
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0

a,+a, 1
ol = X s L

Af

If we say

K :inf{p >0:N(lJS%},
p)
then “(AZf)f:l“(N) <K foreach feB, . We get

sup H(AZf)leuN <2K <o

feBy,

Since

i, <2farnial, <2x.

W)~

Remark 7. 7, (B(X,Y)) < E, . This follows from the fact that

Af) <4

A=14d-r4

Indeed, if (4;,) € ¢y (B(X,Y)) and f € B,. , we can write that

el

SH(Ak)f:lH(N) so that H(A,tf)fZIHN S2H(Ak)2°:1H(N) from Lemma 2. This

[ ]4s
=1 P

£

whence H(Altf)fﬂ”(m

implies

sup H(Aztf)f:l“]v < 2H(Ak )20:1“ <.

feBY* V)

Example 8. The inclusion relation in Remark 7 may be strict. Let X =¢,, Y=h,,,and M , N
be mutually complementary Orlicz functions such that M (1) =1. Define 4, : ¢, — h,, by

k—th position
Ax=x,®e¢ =00,.,0, x ,0,..
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for x=(x,)e?,. Since h,, is equivalent to ¢, by the cite [5, p.148], for some f € B,.
f()= %,
where y=(y,) e/, and ||y||(N) = ||f|| . Hence, (A;:f)(x) = f(4,x)=x,y, so that

|41 =D}

This implies

Sl
L
and so

o0

sup ZN — [ <1,

JEB s k=1 "y”(N)

This means (4,) € E, . On the other hand, ||Ak|| =1 for each k. Let us show this assertion. For

xeB,

”Akx"(M) = ”xk ®ek||(M) - inf{/? >0: M(|x—pk|j < 1}
=1)

<[

that is, Mo, Also, for x=¢,,

ER
(4,)e !y (B, h,)) since Zkle(l/p)zoo for every p>0.

A x” =1, whence the assertion proved. Therefore,

(M)

In the case Y is finite dimensional, Dvoretzky-Rogers theorem assert that the inclusion
relation (7) is an equivalence. To show this let us recall that m, is the space of all scalar

sequences taking on only finitely many values, that is m, = span{{}, where ¢ is the set of all
sequences of zeros and ones.

Theorem 9. £, =/, (B(X,Y)) when Y is finite dimensional.
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Proof. Suppose that (4,)eE, and x=(x;,)eh,(X). For each v=(v,)em, we have
vx=(v,x;) € hy, (X).Indeed, for each p>0

Z M( Ivkxkllj kz (Ivkl IkaIIJ s M(%}”’

k=1

where A= max|vk| . Further,

z A (vVexy)
3

converges for all vem,;, since the operator Tx = Z:=1Ak (x;) well-defined on 4, (X) by the

virtue of Theorem 5. Now let (k;) be a strictly increasing sequence of natural numbers, and
define b=(b,) by

1, ifk=k
b, = :
0 , ifk#k

Then, obviously b € m,, and so
z A (bxy) = Z Ak, (xk, )
k i

is convergent. This implies that the series ZAk(xk) is subseries convergent, so it is
e

unconditionally convergent. Hence, from Dvoretzky-Rogers theorem it is absolutely convergent

since Y 1is finite dimensional. So, we have that

24 <0
[
for each x=(x,) e h,, (X). Now, we can find some y, € B, such that

4]l < 2l 4o

for each k , since each 4, € B(X,Y). Further, define the sequence z=(z,) such that z=u,y,
for each (u,) € h,, . Obviously z € h,,(X) and so
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Zk:"Ak [RTAES sz:|“k| %A
- 2Z"Ak (uy vy )”

k
= ZZ"Akzk" < o0,

k

_, €hy . But, from the cite [8], «-dual of &, is

equivalent to 7, . Hence,

1

for some p>0. Thismeans 4=(4,)e/,(B(X,Y)).

Corollary 10. Let M, N be mutually complementary Orlicz functions. Then
[hM(X)]*:fN(X*)-

This is a direct consequence of Theorem 5 and Theorem 9 for Y = X, the scalar field of

hy(X) and X .
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