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Abstract

Coronavirus disease (COVID-19) is a newly found coronavirus that causes an infectious disease. COVID-19, which has a detrimental impact on many people, has varied 
effects on different people. Therefore, proteomic analysis is an important approach used to develop early diagnosis and treatment strategies. This research to classify 
COVID-19 positive patient groups represented by interleukin 6 (IL-6) levels (low, medium, high) and control groups based on proteomic analysis using ensemble learning 
methods (Adaboost, Bagging, Stacking, and Voting). The public dataset from a website consists of 49 subjects (31 COVID-19 positives and 18 controls) and 493 proteins 
achieved from blood samples. The dataset was handled to estimate the relation between disease severity and proteins using ensemble learning approaches (Adaboost, 
Bagging, Stacking, and Voting) using ten-fold cross-validation. Predictions were evaluated with accuracy, sensitivity,etc. performance metrics. The accuracy of Adaboost 
(96.00%) was higher as compared to Voting (93.88%) and Bagging (91.84%). However, the Stacking ensemble learning method produced the highest accuracy (97.92%). 
IL6, SERPINA3, SERPING1, SERPINA1, and GSN were the five most important proteins associated with disease severity. In comparison to the other methods, the sug-
gested ensemble learning model (Stacking) produced the best estimation of disease severity based on proteins. The results indicate that changes in blood protein levels 
correlated with the severity of COVID-19 may be benefited to follow early diagnosis/treatment of the COVID-19 disease.
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Introduction

COVID-19 is a global danger caused by the coronavirus that 
causes severe acute respiratory syndrome 2 (SARS-CoV-2). 
Its symptoms include a prolonged dry cough, dyspnea, myalgia 
headache, loss of taste or smell, and gastrointestinal discomfort. 
Clinically, the course of COVID-19 disease is highly varying from 
individual to individual. In some patients, COVID-19 occurs with 
mild symptoms, while in quite a significant part, it occurs with 
symptoms that progress to acute respiratory distress. To date, no 
specific antiviral approach has proven successful in treating the 
disease. The majority of COVID-19 patients recover spontaneously 
without any antiviral treatment. However, early detection and 
treatment for severe and critical patients are very important issues 

that require urgent investigation. The research findings to assess 
the severity of COVID-19 show that proinflammatory cytokines 
play a very important role in lung damage pathophysiology in 
COVID-19 patients.  [1]. Interleukin-6 (IL-6), a proinflammatory 
cytokine, is one of the main mediators of the inflammatory and 
immune response resulting from infection or injury, and more 
than half of COVID-19 patients have elevated levels of IL-6 [2]. 
Changes in IL-6 levels appear to be associated with inflammation, 
respiratory failure, need for mechanical ventilation/intubation, and 
mortality in COVID-19 patients [3, 4]. As considering all these 
results, it can be concluded that determining the effect of IL-6 levels 
on the proteome of COVID-19 patients plays an important role in 
predicting the severity of the disease. Machine learning methods 
have been widely  employed to diagnose diseases and clinical 
decision support systems in recent years. Therefore, during these 
periods when the COVID-19 disease peaked, the need for studies 
in which algorithms capable of classifying with high accuracy by 
combining the dataset(s) obtained from COVID-19 studies and 
machine learning methods have increased considerably. While 
machine learning methods provide high accuracy performance 
in many complex data sets with powerful algorithms, the 
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approaches perform classifications with high variance and low 
accuracy values in some data sets. Different methods have been 
proposed to prevent performance loss in the classification and 
estimation processes. One of these methods is ensemble learning 
methods. Generalization ability for the predictions of more than 
one algorithm (i.e., ensemble methods) is stronger than that of 
a base algorithm and can perform very precise estimations. As a 
result, the main idea of ensemble learning methods is based on 
the idea of combining many base classifiers to obtain a more 
accurate and reliable model (meta classifier) compared to the 
classification success that a base classifier (model) can achieve [5]. 

This study intends to classify COVID-19 positive patients 
represented by IL-6 levels (low, medium, high) and control group 
individuals using ensemble learning methods (i.e., Adaboost, 
Voting, Bagging, Stacking) based on the data obtained by 
proteomic analysis of blood sera of subjects.

Materials and Methods 

Research design and dataset

The relevant data of experimental research were acquired 
from a public website address (http://proteomecentral.
proteomexchange.org/cgi/GetDataset?ID=PXD020601). In the 
open-sourced dataset used in this study, the thirty-three COVID-
19-positive patients were included in Columbia University Irving 
Medical Center/New York-Presbyterian Hospital as determined 
by SARS-CoV-2 nucleic acid testing of nasopharyngeal swabs. 
In this sample, the magnitude of the disease was inferred from 
serum IL-6 levels as determined by CLIA-certified ELISA 
measurements. The control group comprised 16 participants, 
all of whom were nasopharyngeal swab-negative for SARS-
CoV-2 when drawing blood samples. The proteomics analyses 
were conducted on sera from 49 subjects. Results are declared 
comprehensively, which identifies 493 proteins. COVID-19 
patients were divided using path analysis to have low (<10 pg/ 
mL), medium (10−65 pg/mL), and high (>90 pg/mL) IL-6 levels. 
Two subjects in the patient group were included in the control 
group according to the values obtained from the proteomic 
analysis. As a result, COVID-19 positive groups are determined 
as sixteen subjects in the low IL-6 group, five subjects in the 
medium IL-6 group, ten subjects in the high IL-6 group, and 
eighteen subjects in the control groups [6]. 

Data Preprocessing

Many real-world datasets may include  missing values for various 
reasons. Therefore, serious problems arise in many statistical 
analyzes made with these datasets and in the performance of data 
mining algorithms. Removing the missing observations from the 
data set causes the sample size to decrease and the statistical power 
of the analysis to decrease [7]. For this reason, missing values in 
the data set are imputed using the "Impute Missing Value" operator 
in RapidMiner Studio. The Random Forest learner for estimating 
missing values was placed in the subprocess of this operator [8]. 
Instead of excluding observations with missing values from the 
data set, Random Forest allows them to stay in the data set with 
an algorithm that calculates the proximity measure [9]. Another 
problem of machine learning methods is the unbalanced classes 
in the dataset. Therefore, the classes in the dataset are balanced 

using the Synthetic minority over-sampling technique (SMOTE). 
Based on feature space similarities between existing minority 
observations, the SMOTE algorithm creates synthetic/artificial 
data. The working steps of the algorithm can be summarized as 
follows:

Step-1: The k nearest neighbors of each observation belonging to 
the minority class are searched,

Step-2: The difference between the observation belonging to the 
minority class and the observation with k close neighbors (kNN) 
is taken,

Step-3: A random number (α) is chosen between (0,1), this number 
is multiplied by the difference found in Step 2,

Step-4: A new synthetic observation is obtained using the 
following equation.

ꭓnew=ꭓi+(ꭓj-ꭓi )*α

Step-5: Repeat Steps 1-4 to generate the desired number of 
synthetic observations [10]. "Boruta" variable selection method 
was used to increase the performance of machine learning methods 
to be used in our study. The algorithm of the Boruta is intended as 
a wrapper around an algorithm for the classification of Random 
Forest and iteratively excludes the features found by a statistical 
test to be less significant than random samples [11].

Machine learning approaches implemented in ensemble 
learning 

The machine learning algorithms described below were used to 
build ensemble learning approaches.

Deep Learning 

Although deep learning is based on artificial neural networks as 
a basic approach, it is much more than that. Deep learning (DL) 
is an artificial neural network model with an increased number of 
layers. Many hidden layers have been added to the artificial neural 
network, and with the help of these layers, the output layer has 
been found. Since there are many hidden layers in deep learning, 
the number of parameters is quite high. Each layer consists of 
multiple trainable layers placed behind itself [12]. 

Decision Tree

The Decision Tree (DT), which can be described as a recursive 
partitioning of the instance space, is one of the most commonly 
used practical approaches compared to other algorithms, and the 
classification algorithm is a structure that divides the data set into 
sub-sections with appropriate procedures. Advantages of decision 
tree algorithms; establishing understandable rules, having the 
ability to work with very large data, the model is easy to interpret 
and understand, to be able to work with continuous and categorical 
data, be operable even if there are missing values in the data set. 
In addition to all these advantages, there are also negative aspects 
such as lowering the performance of the algorithm in multi-class 
problems when there are continuous variables and the number of 
training data is small or limited [13].
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Random Forest

Random Forest (RF) is an method developed based on a decision 
tree. Decision trees that exist in more than one form are combined 
with each other and transformed into multiple decision trees, 
and all decision trees are independent of each other. The final 
classification results are selected according to simple and multiple 
selective voting methods. If a random forest algorithm will be 
used to solve a regression problem, the mean square error (MSE) 
formula is used. If a random forest algorithm will be used to solve 
a classification problem, the Gini index formula is used [14].

Gradient Boosted Trees

Gradient boosted trees (GBT’s) is a learning algorithm based on the 
optimization of the loss function. This method, which  Friedman 
introduced in 2001, generally uses the mean squared error, which 
is also known as multiple additive regression trees. It is aimed 
that the estimates made by the model have the lowest value of 
the loss function. For this purpose, the estimates are updated with 
the learning coefficient determined using the gradient descent 
algorithm, and the MSE value is tried to be minimized [15]. 

Ensemble learning approaches

Bagging (Bootstrap aggregating)

In the Bagging ensemble learning method based on the Bootstrap 
sampling method, single algorithms are trained with different 
datasets created by dividing the training data set into equal sample 
numbers. At the same time, all classifiers classify different sub-
training sets. The bagging method uses the majority vote technique 
to combine the classifiers' estimates. In this method, the classifiers' 
majority estimation among all the estimators' classification 
predictions is accepted as the classification guess of the ensemble 
method [16]. In this study, the RF algorithm was used as a nested 
classifier in the Bagging ensemble learning method. 

Adaboost

Adaptive Boosting is one of the powerful and widely applied 
ensemble learning methods in boosting ensemble learning 
methods. This method, proposed by Freund and Shapire, aims to 
achieve a strong result by combining the weak results obtained 
from the data. In the first step, it distributes the data evenly and 
then makes a classification. As a result of this classification, it finds 
the weakest classifier and re-weighs it. During the re-weighting 
process, it focuses on the lowest outcome [14]. It combines several 
weak classifiers to create a successful classifier. Its purpose is to 
increase its success in terms of classification. Thus, it is possible 
to reduce errors and increase correct classifications at every stage 
[16]. In this study, the RF algorithm, which was explained earlier, 
was used as a classifier in the Adaboost ensemble learning method.

Voting

The main idea of the Voting method, which is one of the ensemble 
learning methods, is to estimate the highest voted class label by 
collecting the estimates of each basic classifier it will combine. 
In the voting method, the weight of all basic classifiers is equal. 
The Voting method often achieves a higher accuracy rate than 
the classifier that provides the highest accuracy in the ensemble. 

When the base classifiers are different from each other (diverse) 
in ensemble learning methods, the approaches can make different 
types of errors and produce lower predictions. That is why the 
formed meta classifier gives more successful results [5]. In this 
study, RF, DL, and GBT’s algorithms were used as classifiers in 
the Voting ensemble learning method.

Stacking

The stacking ensemble learning method developed by Wolpert is 
a simple ensemble learning technique that creates a meta classifier 
by combining base, multiple classification models. In other words, 
the Stacking model is another ensemble model that is trained by 
combining the estimates of two or more basic classifier models. 
Predictions made from models created by the base classifier are 
used as input for each ordered layer and are combined to create a 
new set of predictions. In the stacking method, base classification 
models are trained on the original training data set. The meta-
classifier is then created based on the outputs (estimates) of the 
ensemble's basic classification models [17]. In this study, RF, 
DC, and DL algorithms were used as classifiers in the Stacking 
ensemble learning method. GBT’s algorithm was determined 
as a meta classifier. The information gain ratio technique was 
implemented to determine the related predictors with COVID-19.

Resampling procedure and performance evaluation metrics

Cross-validation is a procedure of resampling generally used on 
a small dataset(s) to validate machine learning models. The ten-
fold cross-validation was applied to test the validity of the models. 
These approach make it possible to use the whole data set during the 
modeling phase. In this approach, the dataset is randomly divided 
into ten equal parts. Nine of these equal parts were used as training 
data and one as test data. In this way, an accuracy calculation 
is made, then an accuracy calculation is made by replacing the 
test data set and training data sets, and the accuracy rate of the 
model is calculated by taking the average of the accuracy values 
[18]. Performance metrics for all models are given with accuracy, 
classification error, kappa, F1 measure, sensitivity, specificity, and 
G-mean.

Data Analysis

The whole data set consists of quantitative variables. Therefore, 
the conformity of all variables to the normal distribution was 
checked with the Shapiro Wilk test. Data are summarized with 
mean, standard deviation, median, and min-max. Kruskal Wallis 
test and one-way analysis of variance test were used for statistical 
analysis. After the Kruskal Wallis test, the Conover test was used 
for multiple comparisons, while the Tukey and Tamhane T2 tests 
were used where appropriate for the One-Way analysis of variance. 
The effect size was calculated to evaluate the effects of each protein 
on the COVID-19 positive and control groups [19]. According to 
the statistical analyzes used (Kruskal-Wallis, one-way analysis of 
variance), the interpretation values of the literature are generally 
accepted as small effect size between 0.01-0.06, medium effect 
size between 0.06-0.14, and large effect size greater than 0.14 [20]. 
p <0.05 was considered statistically significant. Data analysis was 
performed with the programming languages "Statistical Analysis 
Software"[21], “DTROC: Diagnostic Tests and ROC Analysis 
Software” [22], RStudio Version 3.6.2 [20], and RapidMiner 
Studio Version 9.8 [23].
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Table 1. Descriptive statistics of the proteins in the preprocessing dataset by the groups

Proteins 
Names

Groups

Effect Size p-value*Low IL-6 Medium IL-6 High IL-6 Control

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

ITIH4 46587.5a±5422.9 90533.06b±19751.49 91720b±20925.78 100650b±32204.55 0.50 (Large) <0.001*

GSN 26437.5a±3544.17 12882.22b±1663.08 10039b±3197.72 12342.22b±4684.51 0.78 (Large) <0.001*

F13B 10964.38a±1967.09 7101.33b±1354.58 5893b±1642.37 6689.44b±1831.21 0.57 (Large) <0.001*

SERPINA4 11773.75a,c±2051.77 13892.83a±2162.65 6033b±1934.34 9095.56b,c±5101.5 0.43 (Large) <0.001*

CPN1 1581.25a±398.53 3457.33b±845.18 3470b±824.51 4288.33b±1923.89 0.44 (Large) <0.001*

C9 12870a±2479.79 22409.94b±4308.64 28990b±10031 28211.67b±11761.84 0.40 (Large) <0.001*

IGHA1 82593.75a±22234.49 125291.56b±17629.78 159700b±26008.76 150350b±48831.45 0.47 (Large) <0.001*

CFI 9680.63a±1147.89 15699.28b±3024.72 14255b±3281.47 15656.67b±5908.75 0.32 (Large) <0.001*

TTR 105318.75a±14087.36 105831.22a±15685.04 67210b±22095.62 105827.78a±49808.28 0.19 (Large) <0.001*

C1QB 18206.25a±2799.64 27569.33b±9384.94 21930b±2855.81 25466.67b±4836.5 0.29 (Large) <0.001*

Median (Min-Max) Median (Min-Max) Median (Min-Max) Median (Min-Max)

IL6 5(5-5) 5.46b(3,1-8,7) 32.75a(11.4-61.3) 315b(96-315) 0.83 (Large) <0.001**

SERPINA1 409000a(332000-550000) 656177b(615000-927000) 801000b(621000-1000000) 748000b(482000-1400000) 0.61 (Large) <0.001**

VWF 7680a(6020-11400) 21054.5b(8560-28300) 18600b(6900-47500) 20600b(11200-56200) 0.49 (Large) <0.001**

CFB 42550a(30300-55600) 68159b(43200-112000) 79150b(52300-120000) 83150b(27700-169000) 0.51 (Large) <0.001**

SERPINA3 37550a(27400-43500) 145063b(125000-186000) 157500b(123000-209000) 156500b(65800-359000) 0.56 (Large) <0.001**

C7 11100a(8510-16400) 19298b(12200-27000) 16850b(12600-49300) 21550b(14400-33000) 0.54 (Large) <0.001**

SERPING1 29100a(20700-38500) 72521b(57900-73600) 59350b(48700-98100) 66700b(47100-132000) 0.62 (Large) <0.001**

C1S 14000a(11600-17100) 16847,5a(15100-21000) 21100a,b(15400-25500) 25600b(14100-70500) 0.62 (Large) <0.001**

APOE 23050a(14200-30600) 43874b(30900-64000) 35450b(23000-109000) 42600b(29000-93600) 0.51 (Large) <0.001**

LBP 1415a(879-2730) 3327b(2790-4600) 6080b,c(3990-17200) 7025c(1290-28400) 0.62 (Large) <0.001**

SERPINF1 2995a(2200-4540) 4219a(3970-5670) 6835b(3420-9270) 6135b(3230-14600) 0.65 (Large) <0.001**

ORM1 12250a(5050-21000) 27174.5b(24600-37000) 32850b(24900-42400) 25650b(14400-48400) 0.56 (Large) <0.001**

LRG1 6465a(4130-10700) 13505b(10600-21800) 27350c(16900-38900) 21000d(7790-39900) 0.67 (Large) <0.001**

SAA1 789.5a(373-1540) 24177a,b(4410-51300) 32550b,c(4910-102000) 24300b,c(300-138000) 0.51 (Large) <0.001**

C5 45800a(37700-63700) 80377b(72800-110000) 75450b(61500-103000) 69200c(23900-110000) 0.53 (Large) <0.001**

HRG 31150a(23000-38500) 12432b(4980-27900) 11750b(7260-29900) 22100a,b(8660-70800) 0.41 (Large) <0.001**

RBP4 10575a(4040-22200) 14783a(12900-25300) 19650a,b(5150-35700) 27950b(4620-53000) 0.34 (Large) <0.001**

S100A9 1140a(581-2890) 4620a(1530-9600) 5040a,b(1450-20000) 5325b(1060-32100) 0.49 (Large) <0.001**

a, b,c: Different characters in each row show a statistically significant difference (p <0.05); *: One-way analysis of variance; **: Kruskal-Wallis test

Results 

Baseline characteristics of the chosen variables by feature 
selection

In the dataset, variables with missing observations were assigned 
missing values using the RF algorithm within the "Impute Missing 
Value" operator in RapidMiner Studio. Then, the unbalanced 
groups in the dataset were balanced using SMOTE to include 16 
subjects in the low IL-6 group, 18 subjects in the medium IL-6 

group, ten subjects in the high IL-6 group, and 18 subjects in the 
control group. When the variable selection method was applied 
to the Boruta, 28 proteins remained in the dataset. Descriptive 
statistics for the new 28 protein datasets obtained as a result are 
represented in Table 1.

When considering Table 1, the differences between the groups 
regarding all the proteins in the dataset are statistically significant 
(p<0.001).
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Findings of the constructed ensemble models

In this study, ensemble learning models (Adaboost, Bagging, 
Stacking, and Voting) are composed to classify three COVID-19 
positive patient groups (low, medium, high) and a control group 
based on proteomic analysis from sera. Considering the model 
performance metric results in Table 2, the Stacking ensemble 
learning models gave the most successful result. The accuracy 
rate based on Adaboost ensemble learning models (96.00%) 
was more successful than the accuracy rate based on the other 
ensemble learning models (Bagging 92.00%, Voting 94.00%). In 
kappa statistics, which measure the reliability of the statistical fit, 
the Adaboost, Bagging, Stacking, and Voting ensemble learning 
models represent a perfect fit with the values of 0.947, 0.887, 
0.971, and 0.917.

Figure 1 exhibits the pseudo-code of the Stacking ensemble learning 
model, which gives the best results in classifying COVID-19 
positive represented by IL-6 levels and control individuals based 
on the proteomics data.

Table 3 and Figure 2 display the importance levels of top ten 
proteins in COVID-19 positive represented by IL-6 levels and 
control individuals on the severity of the disease in the Stacking 
ensemble learning modeling with the value of information gain 
ratio (IGR).

Table 2. Performance metrics of the ensemble learning models

Models Groups Sensitivity 
(%)

Specificity 
(%)

Precision 
(%)

F1 
(%)

G-mean 
(%)

Accuracy 
(%) Class. Error Kappa

Stacking

Low IL6 100 100 100 100 100

97.92 2.08 0.971
Medium IL-6 80.00 100 100 88.89 98.88

High IL-6 100 97.44 90.91 95.24 95.35

Control 100 100 100 100 100

Adaboost

Low IL6 100 96.97 94.12 96.97 97.01

96.00 4.00 0.947
Medium IL-6 80.00 100 100 88.89 98.86

High IL-6 100 97.44 90.91 95.24 95.35

Control 94.44 100 100 97.14 98.37

Voting

Low IL6 100 100 100 100 100

93.88 6.00 0.917
Medium IL-6 60.00 97.72 75.00 66.67 84.66

High IL-6 90.00 94.87 81.82 85.71 89.26

Control 100 100 100 100 100

Bagging

Low IL6 100 96.97 94.12 96.97 97.01

91.84 8.00 0.887
Medium IL-6 60.00 100 100 75.00 97.70

High IL-6 90.00 94.87 81.82 85.71 89.22

Control 94.44 96.77 94.44 94.44 95.49
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The IL6 (1.00), SERPINA3 (0.99), SERPING1 (0.99), SERPINA1 
(0.80), and GSN (0.80) provided the highest IGR, while the lowest 
IGR were for IGHA1 (0.31), S100A9 (0.27), C1S (0.26), HRG 
(0.17), SERPINA4 (0.12), and RBP4 (0.03) from the Stacking 
ensemble learning model.

Discussion 

Nowadays, COVID-19 has been a severe public health topic 
globally. In clinics for the SARS-CoV-2 infection diagnosis, 
nasopharyngeal swab samples and serological tests are 
regularly used. However, biomarkers are yet to be detected for 
disease prognosis until it could lead to lethal symptoms. The 
comprehension of the host response against the viral infection 
might provide an important sign about the advancement of disease 
severity. Nowadays, proteomics approaches are applied for a 
detailed understanding of the structure of disease. Omics models 
that allow understanding disease structure support clinicians in 
coping with the COVID-19 outbreak [24]. Although COVID-19 
can be diagnosed at an early stage with methods based on 
proteomic analyses,  detecting critical COVID-19 patients before 

the appearance of symptoms to decrease mortality is uniformly 
important. Hence, the development of methods based on artificial 
intelligence and machine learning approaches made with the 
data obtained from proteomic analysis plays an important role 
in the early diagnosis and diagnosis of the disease [25]. In this 
research, three positive (mild/extreme/critical) COVID-19 patient 
groups represented by IL-6 levels and a control group may be 
recognizable based on ensemble learning models (i.e., Adaboost, 
Bagging, Stacking, and Voting) related to proteomic analysis 
of serum from COVID-19 patients. Considering the empirical 
results from the current research, it can be terminated that the 
ensemble models based on the results of proteomic analyses 
generate promising prediction outcomes in classifying COVID-19 
positive (mild/extreme/critical) represented by IL-6 levels and the 
control group. When the ensemble learning methods' prediction 
results are compared according to the performance metrics (i.e., 
accuracy,  sensitivity,etc.), the Stacking ensemble learning method 
outperforms Adaboost, Bagging, and Voting on aforementioned 
the classification. A newly published research has reported that 
the accuracy (89.36%) of the stacking model is considerably 
superior to those of the single models (MLP, KNN, CART, and 
SVM) for determining transformer faults [26]. Another recent 
study has explored various techniques for ensemble learning, such 
as bagging, boosting, and stacking for landslide susceptibility 
mapping, and has demonstrated that Stacking can offer a promising 
method for stable and enhanced modeling of the landslide [27]. 
The results of the outlined surveys are in line with the outcomes of 
ensemble learning techniques in the present study.  

The five top proteins, IL6, SERPINA3, SERPING1, SERPINA1, 
and GSN, calculated from the best performing Stacking ensemble 
learning method, can be used as biomarkers in the COVID-19 
severity classification. In infection and tissue injury, IL-6 is 
promptly secreted as an immune response by strictly regulated 
transcriptional and post-transcriptional mechanisms [28]. Present 
studies in literature proposed that the rapid progression of the 
disease's severity in the outbreak of COVID-19 might be due to 
the cytokine storm or cytokine release syndrome [29, 30]. Hence, 
the violently elevated levels of IL-6 play a very important role 
in the deterioration of the health of COVID-19 patients [31]. 
The elevated levels of IL6 observed in COVID-19 positive 
patients can progress from acute respiratory distress syndrome to 

Table 3. Variable importance values for the Stacking ensemble learning model

 Proteins  IGR  Proteins  IGR  Proteins  IGR  Proteins  IGR

IL6 1.00 SAA1 0.69 VWF 0.45 IGHA1 0.31

SERPINA3 0.99 CPN1 0.69 APOE 0.40 S100A9 0.26

SERPING1 0.99 C7 0.56 F13B 0.38 C1S 0.25

SERPINA1 0.80 CFB 0.52 CFI 0.37 HRG 0.17

GSN 0.80 LRG1 0.49 C1QB 0.35 SERPINA4 0.11

ITIH4 0.69 ORM1 0.49 C5 0.34 RBP4 0.03

LBP 0.69 SERPINF1 0.47 C9 0.33 TTR 0.00



1522

severe pneumonia, leading to multisystem organ failure and high 
mortality [32, 33]. A study has shown that with an increase in IL-6 
level, upcoming respiratory failure can be predicted with high 
accuracy and can help doctors accurately distinguish patients by 
disease severity at an early stage [6]. Many studies in the literature 
have indicated that IL-6 can be used as a biomarker to determine 
the severity of COVID-19 [34-36]. Thence, the proposed Stacking 
ensemble learning model's findings indicate that the IL-6 protein 
is significantly associated to COVID-19 severity, as described by 
the past works.

Similarly, the top five proteins identified by the proposed model 
are three types of SERPIN components (SERPINA3, SERPING1, 
and SERPINA1). Proteolytic events within various biological 
processes, including digestion, coagulation, inflammation, and 
immune responses, are regulated by serine protease inhibitors 
(serpins) [37]. A study has shown that the aforementioned 
SERPIN's proteins are at high expression levels in COVID-19 
patient sera representing high IL-6 levels. In this context, the 
Covid-19 severity may be associated with an increase in the levels 
of SERPIN proteins [6]. On the other hand, when the effect sizes 
for selected proteins are examined, the four proteins with the 
highest values are IL-6 (0.83), GSN (0.78), LRG1 (0.67), and 
SERPINF1 (0.65), respectively. The findings of the proposed 
Stacking ensemble model demonstrate that the five proteins 
(i.e., SERPINA3, IL6, SERPING1, SERPINA1, and GSN) are 
significantly identify with COVID-19 severity, as expressed by the 
preceding work.

There are many studies on proteomics data to classify COVID-19 
severity based on machine learning approaches. In one study, 
they performed plasma proteomics of a population of COVID-19 
patients, including non-survivors and survivors suffering from 
moderate to severe symptoms, profiling host responses to COVID-19 
and discovered various plasma protein changes consistent with 
COVID-19. Using the proteomics, they used machine learning-
based models (penalized logistic regression) to distinguish patients 
of different severity (fatal, severe, mild, health). The area under the 
curve for the fatal, severe, mild and health groups of the created 
model is 0.952, 0.917, 0.974, and 0.983, respectively [38]. In 
another study, a machine learning approach (ExtraTrees classifier) 
was used to estimate the severity of COVID-19 as a result of multi-
omic analysis of 128 blood samples from COVID-19-positive and 
COVID-19-negative patients with different disease severity and 
consequences. The importance degree of COVID-19 of the model 
created was 0.80 with an accuracy value [39]. Various ensemble 
learning methods have been used in the classification of Covid-19 
disease with different radiological images [40, 41]. However, the 
number of studies using one or more of the omic technologies 
together remained quite limited. However, as far as we know,  no 
study investigates serum proteomics data of COVID-19 patients 
regarding IL-6 levels based on ensemble learning methods. 
Therefore, we precipitate that the current research provides the 
first proteomics analyses of serum in COVID-19, stratiformed by 
the circulation of IL-6 levels using ensemble learning techniques.

Ultimately, the suggested model (Stacking ensemble learning 
model) realized the best prediction of disease severity based on the 
proteins comparatived to the other algorithms. The results indicate 
that alters in blood protein levels correlated with the disease's 

severity may be used in following the severity of COVID-19 
disease and in early diagnosis and treatment.
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