DSpace Repository

A2BO4±δ as New Materials for Electrocatalytic Detection of Paracetamol and Diclofenac Drugs

Show simple item record

dc.contributor.author Zine, A.
dc.contributor.author Ferkhi, M.
dc.contributor.author Khaled, A.
dc.contributor.author Kuyumcu Savan, E.
dc.date.accessioned 2022-10-06T12:54:13Z
dc.date.available 2022-10-06T12:54:13Z
dc.date.issued 2022
dc.identifier.issn 18682529 (ISSN)
dc.identifier.uri http://hdl.handle.net/11616/72036
dc.description.abstract In this study, the electrochemical detection of drugs in the human body such as paracetamol and diclofenac was performed using the La2NiO4/carbon black and Pr2NiO4/carbon black electrocatalysts as sensor. The oxide materials were synthesized by the citrate method. The crystallinity of materials was determined by X-ray diffraction; the cell parameters and the crystallite size were calculated using the Debye–Scherrer formula. Morphology and grain size were determined by scanning electron microscope and the pore size was determined by the BET analysis. X-ray photoelectron spectroscopy analysis was used to evaluate the surface state of the synthesized oxide powders. Electrochemical characterization of the drugs on the electrocatalysts was carried out by cyclic voltammetry at different scanning speeds in a range of drug concentrations between 3 and 200 μmol in a phosphate-buffered saline solution at pH 7. The square wave method was used to determine the detection limits. The synthesized nano-particle-based electrodes demonstrated excellent sensitivity in detecting drug/biomolecules (PCM and DIC) in biological fluids with the minimum detection limit 1.99 μM and 2.32 μM, respectively, at La2NiO4/carbon black electrode and 2.04 μM and 2.37 μM, respectively, at Pr2NiO4/carbon black electrode. The peak currents relative to the detection of the paracetamol and diclofenac drugs are respectively 800 and 1000 on La2NiO4/carbon black and 1000 and 500 μA on Pr2NiO4/carbon black. This remarkable behavior enables us to propose these materials as alternative electrocatalysts that act as selective sensors for drug detection in the human body. Graphical Abstract: [Figure not available: see fulltext.] © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
dc.source Electrocatalysis
dc.title A2BO4±δ as New Materials for Electrocatalytic Detection of Paracetamol and Diclofenac Drugs


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record