DSpace@İnönü

DNA base damage by the antitumor agent 3-amino-1,2,4-benzotriazine

Basit öğe kaydını göster

dc.contributor.author Birincioglu, M
dc.contributor.author Jaruga, P
dc.contributor.author Chowdhury, G
dc.contributor.author Rodriguez, H
dc.contributor.author Dizdaroglu, M
dc.contributor.author Gates, KS
dc.date.accessioned 2022-10-19T12:19:11Z
dc.date.available 2022-10-19T12:19:11Z
dc.date.issued 2003
dc.identifier.uri http://hdl.handle.net/11616/84466
dc.description.abstract Tirapazamine is a bioreductively activated DNA-damaging agent that selectively kills the hypoxic cells found in solid tumors. This compound shows clinical promise and is currently being examined in a variety of clinical trials, including several phase III studies. It is well established that DNA is an important cellular target for tirapazamine; however, the structural nature of the DNA damage inflicted by this drug remains poorly understood. As part of an effort to understand the chemical events responsible for the hypoxia-selective cytotoxicity of this drug, the studies reported here are designed to characterize tirapazamine-mediated damage to the genetic information stored in the heterocyclic base residues of double-stranded DNA. Here, we used gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry to characterize and quantify oxidative DNA base damage mediated by tirapazamine. A multiplicity of modified bases including 8,5'-cyclopurine-2'-deoxynucleoside tandem lesions were identified and quantified. The results provide the first detailed insight regarding the structural identity of the DNA base lesions caused by this drug. Interestingly, it appears that the hypoxic conditions under which tirapazamine operates, along with the unique chemical properties of the drug, yield a unique variety of DNA base damage that is dominated by formamidopyrimidine and 5-hydroxy-6-hydropyrimidine lesions. Importantly, the results suggest that tirapazamine may generate a set of poorly repaired, potentially cytotoxic DNA base lesions that block DNA transcription and replication. Overall, the results indicate that DNA base damage may contribute to the biological effects of tirapazamine in vivo.
dc.description.abstract C1 NIST, Chem Sci & Technol Lab, Gaithersburg, MD 20899 USA.
dc.description.abstract Inonu Univ, Sch Med, Dept Pharmacol, Malatya, Turkey.
dc.description.abstract Univ Maryland Baltimore Cty, Dept Chem & Biochem Engn, Baltimore, MD 21250 USA.
dc.description.abstract Univ Missouri, Dept Chem, Columbia, MO 65211 USA.
dc.description.abstract Univ Missouri, Dept Biochem, Columbia, MO 65211 USA.
dc.source JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
dc.title DNA base damage by the antitumor agent 3-amino-1,2,4-benzotriazine
dc.title 1,4-dioxide (tirapazamine)


Bu öğenin dosyaları:

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster